
OPTIMO: A 65nm 270MHz 143.2mW Programmable Spatial-

Array-Processor with a Hierarchical Multi-cast On-Chip

Network for Solving Distributed Optimizations
Muya Chang, Li-Hsiang Lin, Justin Romberg, Arijit Raychowdhury

School of ECE, Georgia Institute of Technology, GA, USA

Abstract—This paper presents OPTIMO, a 65nm, 16-b, fully-

programmable, spatial-array processor with 49-cores and a

hierarchical multi-cast network for solving distributed optimizations.

We demonstrate six template algorithms and their applications and

measure a peak energy-efficiency of 0.279 TOPS/W.

Keywords—optimizations; array-processing; multi-cast network

I. INTRODUCTION

The explosion of big-data problems arising in statistics,
machine learning (ML), image processing, 5G systems and other
related areas [1] have accelerated the development of hardware
prototypes that rely on data-flow architectures and near-memory
processing to address the memory-bottleneck. Looking beyond
the success of neural network (NN) accelerators for
classification [2-5], we recognize a growing need for solving
complex optimization problems, which arise in all areas of
signal processing such as ML model-training, computational
imaging (medical, optical and hyper-spectral), resource-
allocation in 5G massive MIMO networks and solving inverse
problems such as LDPC decoding. In spite of the diversity of
applications, a common mathematical framework, namely
solving constrained-optimizations (i.e., minimize l(x) under a
constraint r(x)=0 for a vector x and functions l and r) has
emerged; and recent advances in the alternating direction
method of multipliers (ADMM) has been particularly successful
for large-scale problems [1]. A review of the ADMM algorithm
is beyond the scope of this article, but it suffices to say that
ADMM is one of the most common iterative algorithms for
solving a large class of optimization problems and interested
readers are pointed to [1] for a detailed survey. From a hardware
perspective, ADMM in a distributed form is very powerful as it

relies on local, iterative computing on a subset of the data (local
memory) along with periodic exchange of information with
near/distant neighbors (reconfigurable data-flow) to converge to
a global solution (called consensus), as shown in Fig. 1. In this
paper, we present OPTIMO, a spatial-array-processor with near-
memory processing, a hierarchical and multi-cast on-chip
network, and full-programming support for solving distributed
optimizations via ADMM. We demonstrate six template
algorithms: (1) least-squares optimizations, (2) least absolute
shrinkage and selection operator (LASSO), (3) elastic-net, (4)
linear support-vector machine (SVM), (5) group-LASSO and
(6) distributed averaging. The algorithms use different
objectives and constraints and represent a vast majority of
statistical algorithms that are used on big-data sets. We note a
4.77x (4.18x) improvement in energy (performance) compared
to a GPU-style SIMT machine with a shared memory (Fig. 1).
To the best of our knowledge, this is the first at-scale
demonstration of a programmable array processor for solving a
set of optimization problems that are used for various emerging
applications, such as training of NN, computational imaging etc.

II. SYSTEM ARCHITECTURE AND DESIGN

A. System Design

Fig. 2 illustrates the chip-architecture where 49
programmable 16b OPUs (optimization processing units)
indexed as (row, column) (1) compute locally and iteratively and
(2) transmit/receive data from the neighbors. The OPUs interact
via a 2-layered multi-cast network with (1) layer-0 establishing
near-neighbor (neighborhood of 8) bi-directional connections

Fig 1: OPTIMO: A patial array processor for solving distributed

optmizations via distributed ADMM. This work (measured) shows

4.77x (4.18x) improvement in energy (performance) compared to a

GPU-style SIMT machine (simulated).

C
e
n

tra
lize

d

➔

A
D

M
M

➔

D
istrib

u
te

d

Constrained

Optimization

Distributed

ADMM Form

ADMM Form

OPU*

...

...

OPU OPU

OPU

OPU OPU

OPU OPUM

OPUN

Time

Compute

Communicate ...

Converge?

Converge? Converge?

Converge?Compute

Wait for OPUN Finish

*OPU: Optimization Processing Unit

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

N
o

rm
al

iz
ed

 c
o

m
p

u
ta

ti
o

n
 e

n
er

g
y

Normalized computation time

Least Square

Lasso

Elastic Net

Linear SVM

Group Lasso

4
.1

8
 x

4.77 x

This work

SIMT

Fig 2 System Architecture showing the 49 OPUs and a 2-layer

multi-cast on-chip network.

F
P

G
A

 / S
y
stem

 C
o
n

tr
o
l

M
em

o
r
y
 In

ter
fa

c
e

Scan

Reset

Done

Start

Clock Out

 ClockIn

C
lo

c
k

 C
o
n

tro
l

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU

OPU OPU

OPUOPU

Multicast

Layer 0
Multicast

Layer 1

and (2) layer-1 connecting 4 cluster center OPUs i.e, (2,2), (6,2),
(2,6) and (6,6) with the chip-center OPU i.e, (4,4). Depending
on the algorithm and structure of the data, optimization
algorithms require complex data-flow patterns where both near-
neighbor (layer-0 connections) as well as global information
(layer-0 and layer-1 connections) are used. The 48-OPUs are
divided into four clusters as shown with one in the center as

shown in Fig. 3. Global consensus is reached in each iteration
via: (1) the four clusters reach cluster-level consensus (layer-0),
(2) gather process where the chip-center obtains cluster-level
consensus information from cluster centers (layer-1) and
calculates the global data, (3) scatter (step-1) process where the
chip-center scatters the global data back to the cluster centers,
and (4) a final scatter (step 2 and 3) process where the cluster-
centers spreads the data across all the OPUs. This readies all the
OPUs for the next iteration. The scatter and gather processes are
intrinsic to distributed optmizations as the system computes
locally, distributes information gloabally and iterates to reach
concensus. We compare the proposed hierarchical multi-cast
network with networks that allow 4 or 6 connections to the
neighbors – as is common in convolutonal and deep neural
networks [2]. Architectural and network simulations of various
optmization algorithms on >10000 random data-sets reveal a
29%-77% reduction in convergence time compared to a fixed,
4-neighbor TPU-style connection (Fig. 4).

B. Optimization Processing Unit

Each OPU features (Fig. 5): (1) one computation module
consisting of a programmable digital signal processor (P-DSP),
a scratchpad memory and control logic, (2) 2KB of instruction
cache, (4) 4KB of data memory (for local data R/W), and (5) a
transceiver module for the gather and scatter processes.
Programming is supported via 32b instructions (Fig. 6) and each
inter-OPU data-movement is supported on dedicated links.
Before data-transmission, a transmit buffer temporarily stores
the data and it is flushed out at the end of the transmission.
Received data is not buffered; instead the control logic directly
writes the incoming traffic to the data cache thereby reducing
both latency and energy. The design supports synchronous,
mesochronous as well as asynchronous communication among
OPUs with bidirectional FIFOs enabling fast and parallel data
exchange across clock-crossing boundaries. Fig. 6 further

Fig. 3: Gather and scatter processes of communication enabled by a hierarchical on-chip network result in fast convergence to a global consensus.

Compute cluster

consensus

Gather and calculate

global consensus
Scatter phase 1 Scatter phase 2

Scatter phase 3

End of comm.

Fig 4: Time for convergence for template algorithms as a function

of their connectivity with their neighbors.

0 50 100 150

Distributed
Averaging

Group Lasso

Linear SVM

Elastic Net

Lasso

Least Square

Least Square
(w/ local structure)

No. of clock cycles

4-Neighbor
(Diagonal Only)

4-Neighbor
(Vertical & Horizontal)

8-Neighbor

8-Neighbor +
Hierarchical Multicast
Network
(This work)

4-Neighbor

(Diagonal Only)

4-Neighbor

(Vertical & Horizontal)

8-Neighbor

29%

67%

71%

70%

69%

59%

77%

Fig 5: Architecture of the Optimization Processing Unit (OPU)

showing the principal modules

Data

SRAM

(4 KB)

Instruction

Cache

(2 KB)

M
em

o
r
y
 C

o
n

tro
l L

o
g
ic

TRX Control

TX Module RX Module

Computation Module

Instruction

Decode

TX Cache

(256 B)

Compute Control

TX Data

Write &

Control

Logic

TX Data

Load &

Control

Logic

TX

Interface

RX Data

Write &

Control

Logic

RX

Interface

Data Load & Control Logic

Programmable DSP

Scratchpad Memory

32b 32b

32b

32b
32b 32b

16b

16b

16b

16b

16b16b
Fig 6: Programming support is enabled via a custom instruction set

architecture with a 32-b Instruction format and macro functions

Functional Blocks No. of Instr.

Computation Controller 11

TRX Controller 8

Programmable DSP 768

Macro

Functions

No. of

instr.

Algorithm Type

1* 2* 3* 4* 5* 6*

L1 Norm 3 ✓ ✓

(L2 Norm)2 3 ✓ ✓ ✓ ✓ ✓

L2 Norm 6 ✓

 3 ✓

Shrinkage 3 ✓ ✓

MAC 4 ✓ ✓ ✓ ✓ ✓ ✓

Hinge Loss 3 ✓

Distributed

Averaging
10 ✓ ✓ ✓ ✓ ✓

1*. Least Square

2*. Lasso
3*. Group Lasso

4*. Elastic Net

5*. Linear SVM
6*. Distributed Averaging

D
est.

Mode
Operand 1 Operand 2

DSP Configurations Mask

• Multi-purpose operand 1 & 2

• Configurations & Mask (DSP mode)

• Mode

• Instruction destination

Other

Other

2b 4b 11b 11b 4b

summarizes: (1) the number of instructions supported by each
module, (2) the commonly-used macro functions and the
number of instructions per function, and (3) their usage in the
six template algorithms.

C. Programmable DSP Architecture

Fig 7. illustrates the principal components of the P-DSP,
which consists of three pipeline stages in an architecture
designed to maximize energy-efficiency. The first two stages
support add/subtract and multiply/divide and the final stage
supports a class of fixed-function blocks as shown in Fig. 7.
Instruction level control of the pipeline and variable latency
through the P-DSP is maintained via a program counter. High
level program-code and data-sets are translated to instruction
and data, scanned in to the chip and then executed. Convergence
is declared either (1) after a fixed number of iterations, or (2)
when the maximum cycle-to-cycle change of data in an OPU
falls below a threshold. The clock-crossing FIFO features a 64b
buffer and operates on a 4-phase handshaking scheme (Fig. 8).
The timing diagram for executing ADMM is shown in Fig. 9.
The system is clocked either by (1) a single global clock
(synchronous) or (2) DCO based clock per-OPU enabling
asynchronous/mesochorous links.

D. Die micrograph and chip characteristics

The test-chip is fabricated in TSMC 65nm GP CMOS
process and occupies a total area of 12mm2. It features
306.25KB of on-die memory distributed across 49-cores. The
die micrograph and chip characteristics are shown in Fig. 10.

III. MEASUREMENT RESULTS

Fig. 11 illustrates the measured power-performance trade-
off showing a peak FMAX (in a synchronous setting) of 270 MHz
(at 0.5V) and operation down in 0.5V (with FMAX= 10 MHz).
Energy-efficiency (considering both dynamic and leakage
power) shows a peak of 0.279TOPS/W at 0.6V, below which the
design is leakage-dominated owing to the large (306.25 KB) on-
die SRAM. It should also be noted that an operation here
represents execution of a single pipeline-stage of the P-DSP and
is computationally more demanding than MAC operations
native to NN accelerators. Per-OPU DCO-based clocking
reduces the overhead of routing a global clock and enables
2.7%-7.75% power savings compared to global clocking at iso-
performance. The power-breakdown among computation,
communication and storage at 0.6 V and 1.0 V is shown in Fig.
12. We use the hardware prototype to execute template
algorithms across multiple data-sets and plot the time-to-

Fig 8: FIFO Architecture and the corresponding timing diagram

data_in

F
IF

O
 co

n
tro

l

rst

full

clkA

data_out

F
IF

O
 co

n
tro

l

empty
re

clkB

rd_ptr

wr_ptr

4 x 16 bits
16b16b

Acknowledge

Start event i

Event i done

Ready for next event

Event i+1 done

Start event i+1

Request

Fig 10: Die shot and chip characteristics

Technology TSMC 65nm GP 1P9M

Chip Size 3.41 mm x 3.41 mm

Core Area 3 mm x 3 mm

Package QFN6x6-48

Pin Count 48

Gate Count (logic only) 2725 kGates (NAND2)

On-Chip SRAM 306.25 KB

Number of OPUs 49

No. of pipeline stages in

programmable DSP
3

Core Supply Voltage 0.5-1.2 V

IO Supply Voltage 2.5 V

Clock Rate 10-270 MHz

Network
Asynchronous &

Mesochronous

Peak Energy Efficiency 279 GOPS/W

Arithmetic Precision 16-bit fixed-point

Data

SRAM

3 mm

3 mm
Layer 1 FIFOs

329.6 um

3
2

9
.6

u
m

I-Cache

TX

buffer
P-DSP

OPU

Layer 0 FIFOs

…

Clk

RX

TX

69.6 um

6
9

.6
u
m

Fig 11: Measured (a) Power-performance trade-off (b) Energy-

efficiency as a function of the supply voltage

0

50

100

150

200

1

10

100

1000

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

P
o

w
er

 (
m

W
)

F
M

A
X

 (
M

H
z)

Vcc (V)

0

50

100

150

200

250

300

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

E
n
er

g
y

E
ff

ic
ie

n
cy

G
O

P
S

/W
at

t

Vcc (V)

L
ea

k
a

g
e

D
o

m
in

a
te

d

D
yn

a
m

ic
 P

o
w

er

D
o

m
in

a
te

d

279 GOPS/W

Fig 9: Timing diagram of showing the various steps of a template optimization problem

clk

mode

sys_start

sys_done

Scan In Computation Computation

One iteration: 245k clk

Total Program: 2455k clk

813k clk 54k clk 190k clk 725 clk

Scan OutDivergence?Communication

DSP

COMM

Done

Gather ScatterLocal mean

CALLD WB CALLD WBCALLD WB

rst

Fig 7: Programmable DSP Architecture showing a 3-stage pipeline

B

A

D

C
==

ADD

SUB

MULT

DIV

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Flags

Pattern

Detect

Output

16b 16b

16b

16b16b

16b

16b

16b

Pipeline stage 1 Pipeline stage 2 Pipeline stage 3

Boolean Functions

Shrinkage Function

ALU

Hinge Function

Square Root

Comparotor

Bypass

compute and energy at 0.6 V (Fig. 13). Although we
demonstrate the capability of this near-memory spatial-
architecture in solving distributed optimizations, the proposed
hardware and programming model can also support a variety of
other array processing tasks including inference in deep and
convolutional neural networks.

IV. APPLICATIONS

The programmable and iterative optimization solver is
capable of addressing multiple applications. MRI image
reconstruction from non-uniformly sampled data-points is
computationally challenging and requires patients to lie in the
machine for a long time. Our solution uses iterative least-squares
optimization (Fig. 14 (a)) to reconstruct MRI images with high
PSNR in less than 8ms. Similarly binary SVMs (Fig. 14 (b)), a
popular choice in ML classification problems shows
convergence with increasing number of iterations (multi-class
SVM records 91% accuracy on the MNIST data-set, which is
the state-of-the-art). Further, feature extraction with LASSO (L1
regularization) used in ML, is shown in Fig. 14 (c). In Table I, a
comparison with the state-of-the-art shows a (1) a highly-
programmable, iterative optimization solver with peak
efficiency of 0.279TOPS/W (2) a hierarchical multi-cast

network for program-specific data-movement and (3)
competitive energy-efficiency and voltage-scalability.

V. CONCLUSIONS

We present a 49-core fully-programmable spatial array
processor for solving distributed optimizations with support for
a large class of algorithms and applications. We note a peak
performance of 270MHz and peak energy-efficiency of 0.279
TOPS/W.

ACKNOWLEDGEMENTS

This work was supported in part by C-BRIC, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA,
and in part by the NSF under grant 1640081, and the Nanoelectronics Research
Corporation (NERC), a wholly-owned subsidiary of the SRC, through Extremely
Energy Efficient Collective Electronics (EXCEL), an SRC-NRI Nanoelectronics
Research Initiative under Research Task ID 2698.002.

REFERENCES

[1] S. B yd, “Dist ibuted Opti izati a d Statistical ea i g via the
Alternating Direction Method of Multipliers Foundations and Trends® in
Machi e ea i g”, 3(1), 1–122. https://doi.org/10.1561/2200000016

[2] Y. Chen, et. al,, JSSC, vol. 52, no. 1, pp. 127-138, Jan. 2017.
[3] B. Moons et. al., ISSCC, 2017, pp. 246-247.

[4] J. Sim et. al., ISSCC, 2016, pp. 264-265.
[5] S. Choi et. al., ISSCC, 2018, pp. 220-222.
[6] T. Chen et. al., ISSCC, 2018, pp. 226-228

Fig 13: Measured algorithm-level benchmarking showing the time to

compute and energy for six template algorithms. The errors bars

show different problem instances that were characterized.

1

10

100

1000

Least

Square

Lasso Elastic

Net

Linear

SVM

Group

Lasso

T
im

e
(m

s)

Vcc = 0.6 V

Fclock = 70 MHz

1

10

100

Least

Square

Lasso Elastic

Net

Linear

SVM

Group

Lasso

E
n
er

g
y

(m
J)

Vcc = 0.6 V

Fclock = 70 MHz

Fig 12: Measured (a) Power reduction via per-OPU clocking (b)

Break-down of power consumption

Communicate

20%

Compute

32%

SRAM

48%

Vcc = 0.6 V

SRAM

32%

Communicate

27%

Compute

41%

Vcc = 1.2 V

2%

4%

6%

8%

0.6 0.8 1 1.2

T
o

ta
l
P

o
w

er
 R

ed
u
c
ti
o

n

w
it
h
 p

er
-O

P
U

 C
lo

c
k

Vcc (V)

Table I: Comparison of the proposed array-processor with competitive spatial-array processors. The proposed design addresses distributed

optimization which presents a more complex data-flow and compute than traditional CNN and DNN inference architectures.

This work [6] [3] [4] [5] [2]

Application Distributed Optimization ECG Signal Reconstruction CNN Inference DNN Inference CNN Inference CNN Inference

Optimization algorithm ADMM implementation subspace pursuit none none none none

Technology 65nm 40nm 180nm 65nm 65nm 65nm

Area 12mm2 3.06mm2 3.3mm2 16mm2 16mm2 16mm2

On-die SRAM 306.25 KB 192KB 144 KB 36 KB 490.5 KB 181.5 KB

Programming support yes fixed function fixed function fixed function fixed function fixed function

On chip network 8 neighbors with hierarchical not reported systolic (4 neighbor) not reported systolic (4 neighbor) systolic (6 neighbor)

Resolution 16b 32b 4b-16b 16b 16b 16b

Power 3.63 - 143.2 mW 21.8 - 93 mW 7.5-300 mW 45 mW 6.57 mW 278 mW

Frequency 10 - 270 MHz 67.5 MHz 200 MHz 125 MHz 10 - 100 MHz 200 MHz

Supply voltage 0.5-1V 0.9V 1V 1.2V 0.7-1.2V 0.82-1.17V

Performance/Watt 0.279 TOPS/W 21.5 MOPS/W 0.26-10TOPS/W 1.42TOPS/W 11.8 - 19.7 GOPS 0.21TOPS/W

Fig 14: Application of OPTIMO in (a) MRI image reconstruction (b)

Binary SVM (c) Lasso feature extraction for sample problems.

P
ar

am
et

er
 X

Parameter Y

-1

-0.5

0

0.5

1

1.5

2

Constraint Parameter (λ)

No. Features = 10

0 1

C
o

ef
fi

c
ie

n
ts

Constraint Parameter

(c)

Random Samples Reconstructed

10

15

20

25

30

4 5 6 7 8 9

P
S

N
R

 (
d

B
)

Subspace Dimension

(b)(a)

