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Abstract—This paper presents OPTIMO, a 65nm, 16-b, fully-

programmable, spatial-array processor with 49-cores and a 

hierarchical multi-cast network for solving distributed optimizations. 

We demonstrate six template algorithms and their applications and 

measure a peak energy-efficiency of 0.279 TOPS/W. 
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I. INTRODUCTION  

The explosion of big-data problems arising in statistics, 
machine learning (ML), image processing, 5G systems and other 
related areas [1] have accelerated the development of hardware 
prototypes that rely on data-flow architectures and near-memory 
processing to address the memory-bottleneck. Looking beyond 
the success of neural network (NN) accelerators for 
classification [2-5], we recognize a growing need for solving 
complex optimization problems, which arise in all areas of 
signal processing such as ML model-training, computational 
imaging (medical, optical and hyper-spectral), resource-
allocation in 5G massive MIMO networks and solving inverse 
problems such as LDPC decoding. In spite of the diversity of 
applications, a common mathematical framework, namely 
solving constrained-optimizations (i.e., minimize l(x) under a 
constraint r(x)=0 for a vector x and functions l and r) has 
emerged; and recent advances in the alternating direction 
method of multipliers (ADMM) has been particularly successful 
for large-scale problems [1].  A review of the ADMM algorithm 
is beyond the scope of this article, but it suffices to say that 
ADMM is one of the most common iterative algorithms for 
solving a large class of optimization problems and interested 
readers are pointed to [1] for a detailed survey. From a hardware 
perspective, ADMM in a distributed form is very powerful as it 

relies on local, iterative computing on a subset of the data (local 
memory) along with periodic exchange of information with 
near/distant neighbors (reconfigurable data-flow) to converge to 
a global solution (called consensus), as shown in Fig. 1. In this 
paper, we present OPTIMO, a spatial-array-processor with near-
memory processing, a hierarchical and multi-cast on-chip 
network, and full-programming support for solving distributed 
optimizations via ADMM. We demonstrate six template 
algorithms: (1) least-squares optimizations, (2) least absolute 
shrinkage and selection operator (LASSO), (3) elastic-net, (4) 
linear support-vector machine (SVM), (5) group-LASSO and 
(6) distributed averaging. The algorithms use different 
objectives and constraints and represent a vast majority of 
statistical algorithms that are used on big-data sets. We note a 
4.77x (4.18x) improvement in energy (performance) compared 
to a GPU-style SIMT machine with a shared memory (Fig. 1). 
To the best of our knowledge, this is the first at-scale 
demonstration of a programmable array processor for solving a 
set of optimization problems that are used for various emerging 
applications, such as training of NN, computational imaging etc. 

II. SYSTEM ARCHITECTURE AND DESIGN 

A. System Design 

Fig. 2 illustrates the chip-architecture where 49 
programmable 16b OPUs (optimization processing units) 
indexed as (row, column) (1) compute locally and iteratively and 
(2) transmit/receive data from the neighbors. The OPUs interact 
via a 2-layered multi-cast network with (1) layer-0 establishing 
near-neighbor (neighborhood of 8) bi-directional connections 

 
Fig 1: OPTIMO: A patial array processor for solving distributed 

optmizations via distributed ADMM. This work (measured) shows 

4.77x (4.18x) improvement in energy (performance) compared to a 

GPU-style SIMT machine (simulated). 
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Fig 2 System Architecture showing the 49 OPUs and a 2-layer 

multi-cast on-chip network.  
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and (2) layer-1 connecting 4 cluster center OPUs i.e, (2,2), (6,2), 
(2,6) and (6,6) with the chip-center OPU i.e, (4,4). Depending 
on the algorithm and structure of the data, optimization 
algorithms require complex data-flow patterns where both near-
neighbor (layer-0 connections) as well as global information 
(layer-0 and layer-1 connections) are used. The 48-OPUs are 
divided into four clusters as shown with one in the center as 

shown in Fig. 3. Global consensus is reached in each iteration 
via: (1) the four clusters reach cluster-level consensus  (layer-0),  
(2) gather process where the chip-center obtains cluster-level 
consensus information from cluster centers (layer-1) and 
calculates the global data, (3) scatter (step-1) process where the 
chip-center scatters the global data back to the cluster centers, 
and (4) a final scatter (step 2 and 3) process where the cluster-
centers spreads the data across all the OPUs. This readies all the 
OPUs for the next iteration. The scatter and gather processes are 
intrinsic to distributed optmizations as the system computes 
locally, distributes information gloabally and iterates to reach 
concensus. We compare the proposed hierarchical multi-cast 
network with networks that allow 4 or 6 connections to the 
neighbors – as is common in convolutonal and deep neural 
networks [2]. Architectural and network simulations of various 
optmization algorithms on >10000 random data-sets reveal a 
29%-77% reduction in convergence time compared to a fixed, 
4-neighbor TPU-style connection (Fig. 4). 

B. Optimization Processing Unit 

Each OPU features (Fig. 5): (1) one computation module 
consisting of a programmable digital signal processor (P-DSP), 
a scratchpad memory and control logic, (2) 2KB of instruction 
cache, (4) 4KB of data memory (for local data R/W), and (5) a 
transceiver module for the gather and scatter processes. 
Programming is supported via 32b instructions (Fig. 6) and each 
inter-OPU data-movement is supported on dedicated links. 
Before data-transmission, a transmit buffer temporarily stores 
the data and it is flushed out at the end of the transmission. 
Received data is not buffered; instead the control logic directly 
writes the incoming traffic to the data cache thereby reducing 
both latency and energy. The design supports synchronous, 
mesochronous as well as asynchronous communication among  
OPUs with bidirectional FIFOs enabling fast and parallel data 
exchange across clock-crossing boundaries. Fig. 6 further 

 
Fig. 3: Gather and scatter processes of communication enabled by a hierarchical on-chip network result in fast convergence to a global consensus. 
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Fig 4: Time for convergence for template algorithms as a function 

of their connectivity with their neighbors. 
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Fig 5: Architecture of the Optimization Processing Unit (OPU) 

showing the principal modules 
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architecture with a 32-b  Instruction format and macro functions  
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summarizes: (1) the number of instructions supported by each 
module, (2) the commonly-used macro functions and the 
number of instructions per function, and (3) their usage in the 
six template algorithms.   

C. Programmable DSP Architecture 

Fig 7. illustrates the principal components of the P-DSP, 
which consists of three pipeline stages in an architecture 
designed to maximize energy-efficiency. The first two stages 
support add/subtract and multiply/divide and the final stage 
supports a class of fixed-function blocks as shown in Fig. 7. 
Instruction level control of the pipeline and variable latency 
through the P-DSP is maintained via a program counter. High 
level program-code and data-sets are translated to instruction 
and data,  scanned in to the chip and then executed. Convergence 
is declared either (1) after a fixed number of iterations, or (2) 
when the maximum cycle-to-cycle change of data in an OPU 
falls below a threshold. The clock-crossing FIFO features a 64b 
buffer and operates on a 4-phase handshaking scheme (Fig. 8). 
The timing diagram for executing ADMM is shown in Fig. 9. 
The system is clocked either by (1) a single global clock 
(synchronous) or (2) DCO based clock per-OPU enabling 
asynchronous/mesochorous links. 

D. Die micrograph and chip characteristics 

The test-chip is fabricated in TSMC 65nm GP CMOS 
process and occupies a total area of 12mm2. It features 
306.25KB of on-die memory distributed across 49-cores. The 
die micrograph and chip characteristics are shown in Fig. 10. 

III. MEASUREMENT RESULTS 

Fig. 11 illustrates the measured power-performance trade-
off showing a peak FMAX (in a synchronous setting) of 270 MHz 
(at 0.5V) and operation down in 0.5V (with FMAX= 10 MHz). 
Energy-efficiency (considering both dynamic and leakage 
power) shows a peak of 0.279TOPS/W at 0.6V, below which the 
design is leakage-dominated owing to the large (306.25 KB) on-
die SRAM. It should also be noted that an operation here 
represents execution of a single pipeline-stage of the P-DSP and 
is computationally more demanding than MAC operations 
native to NN accelerators. Per-OPU DCO-based clocking 
reduces the overhead of routing a global clock and enables 
2.7%-7.75% power savings compared to global clocking at iso-
performance. The power-breakdown among computation, 
communication and storage at 0.6 V and 1.0 V is shown in Fig. 
12. We use the hardware prototype to execute template 
algorithms across multiple data-sets and plot the time-to-

 
Fig 8: FIFO Architecture and the corresponding timing diagram 
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Fig 10: Die shot and chip characteristics 

Technology TSMC 65nm GP 1P9M

Chip Size 3.41 mm x 3.41 mm

Core Area 3 mm x 3 mm

Package QFN6x6-48

Pin Count 48

Gate Count (logic only) 2725 kGates (NAND2)

On-Chip SRAM 306.25 KB

Number of OPUs 49
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3
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Fig 11: Measured (a) Power-performance trade-off (b) Energy-

efficiency as a function of the supply voltage 
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Fig 9: Timing diagram of showing the various steps of a template optimization problem 
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Fig 7: Programmable DSP Architecture showing a 3-stage pipeline 
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compute and energy at 0.6 V (Fig. 13). Although we 
demonstrate the capability of this near-memory spatial-
architecture in solving distributed optimizations, the proposed 
hardware and programming model can also support a variety of 
other array processing tasks including inference in deep and 
convolutional neural networks. 

IV. APPLICATIONS 

The programmable and iterative optimization solver is 
capable of addressing multiple applications. MRI image 
reconstruction from non-uniformly sampled data-points is 
computationally challenging and requires patients to lie in the 
machine for a long time. Our solution uses iterative least-squares 
optimization (Fig. 14 (a)) to reconstruct MRI images with high 
PSNR in less than 8ms. Similarly binary SVMs (Fig. 14 (b)), a 
popular choice in ML classification problems shows 
convergence with increasing number of iterations (multi-class 
SVM records 91% accuracy on the MNIST data-set, which is 
the state-of-the-art). Further, feature extraction with LASSO (L1 
regularization) used in ML, is shown in Fig. 14 (c). In Table I, a 
comparison with the state-of-the-art shows a (1) a highly-
programmable, iterative optimization solver with peak 
efficiency of 0.279TOPS/W (2) a hierarchical multi-cast 

network for program-specific data-movement and (3) 
competitive energy-efficiency and voltage-scalability. 

V. CONCLUSIONS 

We present a 49-core fully-programmable spatial array 
processor for solving distributed optimizations with support for 
a large class of algorithms and applications. We note a peak 
performance of 270MHz and peak energy-efficiency of 0.279 
TOPS/W. 
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Fig 13: Measured algorithm-level benchmarking showing the time to 

compute and energy for six template algorithms. The errors bars 

show different problem instances that were characterized. 
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Fig 12: Measured (a) Power reduction via per-OPU clocking (b) 
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Table I: Comparison of the proposed array-processor with competitive spatial-array processors. The proposed design addresses distributed 

optimization which presents a more complex data-flow and compute than traditional CNN and DNN inference architectures. 
 

This work [6] [3] [4] [5] [2]

Application Distributed Optimization ECG Signal Reconstruction CNN Inference DNN Inference CNN Inference CNN Inference

Optimization algorithm ADMM implementation subspace pursuit none none none none

Technology 65nm 40nm 180nm 65nm 65nm 65nm

Area 12mm2 3.06mm2 3.3mm2 16mm2 16mm2 16mm2

On-die SRAM 306.25 KB 192KB 144 KB 36 KB 490.5 KB 181.5 KB

Programming support yes fixed function fixed function fixed function fixed function fixed function

On chip network 8 neighbors with hierarchical not reported systolic (4 neighbor) not reported systolic (4 neighbor) systolic (6 neighbor)

Resolution 16b 32b 4b-16b 16b 16b 16b

Power 3.63 - 143.2 mW 21.8 - 93 mW 7.5-300 mW 45 mW 6.57 mW 278 mW

Frequency 10 - 270 MHz 67.5 MHz 200 MHz 125 MHz 10 - 100 MHz 200 MHz

Supply voltage 0.5-1V 0.9V 1V 1.2V 0.7-1.2V 0.82-1.17V

Performance/Watt 0.279 TOPS/W 21.5 MOPS/W 0.26-10TOPS/W 1.42TOPS/W 11.8 - 19.7 GOPS 0.21TOPS/W

 
Fig 14: Application of OPTIMO in (a) MRI image reconstruction (b) 

Binary SVM (c) Lasso feature extraction for sample problems. 
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