
EFFICIENT SIGNAL RECONSTRUCTION VIA DISTRIBUTED LEAST SQUARE
OPTIMIZATION ON A SYSTOLIC FPGA ARCHITECTURE

Muya Chang, Samantak Gangopadhyay, Tomer Hamam, Justin Romberg, and Arijit Raychowdhury

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA

ABSTRACT

Optimization problems form the basis of a wide gamut of
computationally challenging tasks in signal processing, ma-
chine learning, resource planning and so on. Out of these,
convex optimization, and in particular least square optimiza-
tion, covers a vast majority; and recent advances in iterative
algorithms to solve such problems of large dimensions have
gained traction. Multi-core designs with systolic or semi-
systolic architectures can be a key enabler for implementing
discrete dynamical systems and realize massively scalable
architectures to solve such optimization algorithms. In this
paper, we present a platform architecture implemented in
programmable FPGA hardware to solve a template prob-
lem in distributed optimization, namely signal reconstruction
from non-uniform sampling. This is a quintessential problem
with wide-spread applications in signal processing, compu-
tational imaging etc. We expect such an architectural explo-
ration to open up promising opportunities to solve distributed
optimizations that are becoming increasingly important in
real-world applications. The complete system design, map-
ping and optimization into an FPGA architecture as well as
analysis of convergence and scalability have been presented.

Index Terms— Optimization, Distributed, Least Square,
Hardware

1. INTRODUCTION

In the era of big data and machine learning over large data
sets, the role of solving optimization problems is becoming
ever important [1]. This is coupled with the realization that
the conventional Von-Neumann machine is a poor choice for
solving iterative algorithms, where large amount of data need
to be periodically read and written from an external memory.
In structure, a vast majority of optimization problems are iter-
ative and involve (1) local updates of state variables with (2)
near neighbor interactions to pass information until conver-
gence is achieved. Such a computing paradigm is inspired by
nature including the human brain, where local computation is

This work was supported by a wholly-owned subsidiary of the Semi-
conductor Research Corporation (SRC), through Extremely Energy Efficient
Collective Electronics (EXCEL), an SRC-NRI Nanoelectronics Research Ini-
tiative under Research Task ID 2698.002

coupled with near-neighbor communication to solve compu-
tationally ‘hard’ problems [2].

Precedence for such a computing paradigm can be found
in systolic arrays of parallel computing units where each
processing element is connected only to its adjacent neigh-
bors [3]. Systolic designs take advantage of globally asyn-
chronous and locally synchronous (GALS) architectures to
reduce clocking complexity and improve design scalabil-
ity [4]. This architecture finds application in wide range of
problems due to modularity, design simplicity and reduced
communication cost [5] [6]. In recent work, FPGA-based
implementations of systolic array have been used [7–9].
However, most of the designs have been employed to solve
signal processing applications such as FFTs. In this paper,
we demonstrate the capability of such machines to emulate
iterative dynamics with applications for solving optimization
problems. In particular, we demonstrate a solution for signal
reconstruction from non-uniform samples via least-square
minimization.

2. OVERVIEW OF NON-UNIFORM SAMPLING AND
SIGNAL RECONSTRUCTION

There are numerous applications in discrete signal processing
where the process of sampling is non-uniform. It occurs when
the samples cannot be collected uniformly or if samples lie
in a non-uniform space [10] [11]. Following the non-uniform
sampling process, it is required to reconstruct the original sig-
nal. Computerized tomography (CT) and magnetic resonance
imaging (MRI) [12] are two such examples where reconstruc-
tion from non-uniform sampling is a fundamental step. In the

-10
0 4

2 2

0

4 0

10

(a)

0 1 2 3 4
0

1

2

3

4

(b)

Fig. 1. (a) 2D continuous function f(u,v) with non-uniform
samples. (b) Spatial location of the non-uniform samples.



following subsections, the algorithmic structure of an iterative
approach to solve reconstruction from non-uniform samples
is discussed.

To describe the algorithm, the following notations are
used: (1) u and v are the horizontal and the vertical argu-
ments of a continuous signal. (2) x and y are the discrete
coordinate indexes. (3) ωx and ωy are horizontal and vertical
spatial frequencies. Let f(u, v) be a band-limited signal with
finite energy in two dimensional real space, R2. The signal is
non-uniformly sampled and are stored in vector b, which are
referred to as f(x, y). The objective is to use the non-uniform
samples to obtain complete reconstruction of f(u, v). Fig. 1
shows an example of f(u, v) and the results of non-uniform
sampling.

2.1. Signal Model

To reconstruct the signal accurately, the choice of basis func-
tions is critical. In this work, we use 2D lapped orthogonal
transform (LOT) cosine-IV harmonics as the basis functions.
For each frame, a set of shifted cosine-IV basis is associated.
This is how the LOT cosine-IV basis is formed. Further more,
a smoothing function g(u, v) is applied to all the basis func-
tions not only to avoid distortions, but also to limit the effect
of the basis on distant neighbors. Equation (1) shows a gen-
eral LOT cosine-IV basis function. Here, f(u, v) is split into
Kx by Ky frames and [kx, ky] represent a specific frame.

ψkx,ωx,ky,ωy
(u, v) =

√
2 · g(u− kx, v − ky)·

cos((ωx +
1

2
)π(u− kx))cos((ωy +

1

2
)π(v − ky)) (1)

Since f(u, v) lies in a Nx · Ny dimensional subspace, it
can be expressed as linear combination of the basis functions
as (2), where α refers to the coefficients associated with the
basis functions.

f(u, v) =

Nx∑
ωx=1

Ny∑
ωy=1

Kx∑
kx=1

Ky∑
ky=1

α(kx, ωx, ky, ωy)ψkx,ωx,ky,ωy (u, v)

(2)

2.2. Gram matrix of the basis

According to (2), we can write an equation for each sample
and the coefficients can be found by solving the inverse-linear
problem of

Az = b (3)

Here b{m,1} is the sample vector, z{KN,1} is the coefficient
vector obtained by stacking the coefficientsα(kx, ωx, ky, ωy),
and A{m,KN} is referred to as the Grammian matrix.

2.3. Approach

There are many ways to solve z, one of the well known and
the straight forward approaches would be using the pseudo-
inverse of A. However, this method incurs extreme penalties

Example : Core 5

Receive
𝒁𝟏
𝒌−𝟏, 𝒁𝟐

𝒌−𝟏, 𝒁𝟑
𝒌−𝟏, 𝒁𝟒

𝒌−𝟏

𝒁𝟔
𝒌−𝟏, 𝒁𝟕

𝒌−𝟏, 𝒁𝟖
𝒌−𝟏, 𝒁𝟗

𝒌−𝟏

Transmit
𝐙𝟓
𝐤−𝟏

Local Memory
𝒄𝟏, 𝑩𝟓𝟓

−𝟏

𝑩𝟓𝟏, 𝑩𝟓𝟐, 𝑩𝟓𝟑, 𝑩𝟓𝟒, 𝑩𝟓𝟔, 𝑩𝟓𝟕, 𝑩𝟓𝟖, 𝑩𝟓𝟗

Core 1

Core 4

Core 7

Core2

Core 5

Core 8

Core 3

Core 6

Core 9

(a)

Example : Core 5

Receive
𝒁𝟏
𝒌−𝟏, 𝒁𝟐

𝒌−𝟏, 𝒁𝟑
𝒌−𝟏, 𝒁𝟒

𝒌−𝟏

𝒁𝟔
𝒌−𝟏, 𝒁𝟕

𝒌−𝟏, 𝒁𝟖
𝒌−𝟏, 𝒁𝟗

𝒌−𝟏

Transmit
𝐙𝟓
𝐤−𝟏

Local Memory
𝒄𝟏, 𝑩𝟓𝟓

−𝟏

𝑩𝟓𝟏, 𝑩𝟓𝟐, 𝑩𝟓𝟑, 𝑩𝟓𝟒, 𝑩𝟓𝟔, 𝑩𝟓𝟕, 𝑩𝟓𝟖, 𝑩𝟓𝟗

Core 1

Core 4

Core 7

Core2

Core 5

Core 8

Core 3

Core 6

Core 9

(b)

Fig. 2. (a) Network topology in 2D structure. (b) The re-
ceived, transmitted, and local data of Core 5.

when the size of A{m,KN} matrix is large. Therefore, alter-
natively we follow an iterative approach, the Jacobi method.
A general update of z in jth component at the kth iteration is
given as (4), where B = ATA and c = AT b.

zk
j = B−1jj (cj −

∑
i 6=j

Bjiz
k−1
i ) (4)

Here the inverse of matrix B is required. Since it is used lo-
cally in the computation, we pre-compute and load the val-
ues to the block ram as part of the initial values. Per-core B
matrices are small and the computation of the inverse is not
computationally challenging.

Some observations are worth emphasizing: (1) To update
zk
j , only the values, which are zk−1

j , from the previous it-
eration are need. (2) Columns of A are coupled only with
neighboring frames, which leads to simpler computation of
Bji.

2.4. Network topology

The network topology for the 2D problem has been shown in
Fig. 2. Here, each core solves a part of the coefficients zj . At
kth iteration each core solves a series of linear matrix equa-
tions and communicates its updated values to its neighbors,
which will be further discussed in the next sections.

3. ARCHITECTURE DESIGN
The design has been synthesized and implemented on a Xil-
inx Virtex-7 FPGA board. Table 1 lists the specifications of
the Virtex-7 FPGA board. Also an emulator has been devel-
oped in software to help us program and debug the hardware,
simulate large-scaled design and perform functional verifica-
tion. Further energy efficiency can be achieved by designing
an ASIC [13]

Model Logic Cells DSP Slices Memory(Kb) I/O Pins
XC7VX485T2 326,400 1,120 27,000 700

Table 1. Specifications of the Virtex-7 FPGA board



Communication

Block

Computation

Block

Receiver Transmitter

Zneighbor

Post-Processor

Zself

Pre-Processor

Zneighbor

Memory

Zself

Memory

Computation 

Unit

Local Memory

Fig. 3. Core architecture.

3.1. Top level architecture

At the top level, the system can be easily reconfigured from
a 2D to a 1D architecture by turning off communication
channels in both the vertical and diagonal communication
routers. To avoid complex clock tree synthesis and enable
scaling without incurring the cost of routing global signals,
the system does not have a global clock; instead, each in-
dividual core has its own local clock following a globally
asynchronous and locally synchronous (GALS) topology.
The individual core operates in two phases: computation
phase and communication phase. To program the system be-
fore the start of an iteration, all the constants are scanned-in
and written into the local memory of each core.

3.2. Core unit design
Each core is locally synchronous and communicates with
other cores through asynchronous mechanism. The structure
of a core is shown in Fig. 3. To take a start from the receiver,
where a core receives the updated data from the neighbors
and saved into Zneighbor memory, then processed the data in
the computation unit, and at the end send to the neighbors
through the transmitter.

3.3. Pre/Post processing blocks
In order to reduce the communication cost, each coefficient in
z is encoded before the transmission. The encoding scheme
includes two steps (1) evaluate the change of coefficients in
successive cycles, ∆zj . (2) identify the location of the most
significant bit (MSB). Thus, the data wires required between
cores becomes log2(bitprecision) + 1. While this method
will be referred to as ∆ZMSB in the following discussion, the
original communication method will be referred to as ZAll,
where we send the complete z.

3.4. Communication unit design
During each iteration, once the computation is done, the core
enters the communication phase. In this work, 4-phase hand-
shake protocol has been used because of the reduced logical
complexity and competitive power/area efficiency. Fig. 4a
shows the block-diagram of the communication unit. The im-
plemented design uses Muller-C element to generate Req and

Ack signal. Fig. 4b demonstrates the associated waveform
diagram for the 4-phase handshake protocol.

4. MEASURED RESULTS
Various key aspects of the design are studied and discussed in
the following subsections.
4.1. Accuracy Analysis
4.1.1. Data Resolution
The number of bit used to represent the variables is important
not only because it affects the estimation, but also because
it affects the hardware architecture. Here we use Q-format
to represent numbers. As can be seen from Fig. 5a, the nor-
malized error for signal reconstruction decreases dramatically
after 16 bits and saturates when the bit precision reaches 32
bits.

4.1.2. Subspace dimension
Fig. 5b shows the accuracy when the number of subspace di-
mensions varies. Here, the original signal is synthesized un-
der the subspace dimension of 5x5, and an interesting trend is
observed. In the beginning, as subspace dimensions increase,
the error reduces. However, we note a reversal of this trend
in the error when the subspace dimension is larger than 5x5.
This can be attributed to the over-fitting noise.

4.1.3. Convergence rate

For majority of the data-sets extremely fast convergence is
observed (< 10 iterations), while the time required for each

Sender 

Logic

Receiver 

Logic

C C

Data 

Ready

Data 

Accepted

Ack

Req

Data

(a)
(b)

Fig. 4. 4-phase hand shaking mechanism. (a) schematic. (b)
waveform.

0

0.8

1.6

2.4

Q2_2 Q4_4 Q8_8 Q16_16 Q32_32

N
o

rm
al

iz
ed

 E
rr

o
r

Bit Precision

Mean

Error 
Reduction: 
~95%

Standard 
Deviation

(μ)

(σ)

(a)

-0.25

0

0.25

0.5

0.75

1

2x2 3x3 4x4 5x5 6x6

N
o

rm
al

iz
ed

 E
rr

o
r

Subspace Dimension

ZAll

ΔZMSB

Max Error 
Difference: 
~0.049 

ZAll

ΔZMSB

(b)

Fig. 5. (a) Measured static error versus different value of bit
precision. (b) Measured static error versus different size of
subspace dimensions.



0

1

2

3

2 4 8 16 32

P
o

w
e

r 
(W

)

Number of Cores

Communication Power

Computation Power

Total Power

(a)

0

1

2

3

4

4 9 16 25 36

P
o

w
e

r 
(W

)

Number of Cores

Communication Power

Computation Power

Total Power

(b)

Fig. 6. Measured power consumption of system on FPGA. (a)
1D case. (b) 2D case.

0%

10%

20%

30%

40%

50%

2 4 8 16 32

R
e

so
u

rc
e

 U
ti

li
za

ti
o

n

Number of Cores

LUT
FF
DSP

(a)

0%

10%

20%

30%

40%

50%

60%

4 9 16 25 36

R
e

so
u

rc
e

 U
ti

li
za

ti
o

n

Number of Cores

LUT
FF
DSP

(b)

Fig. 7. Post-synthesis resource utilization on the FPGA plat-
form. (a) 1D case. (b) 2D case.

iteration depends on the architecture choice and the clock fre-
quency.

4.2. Design Scalability

4.2.1. Critical Delay

The effect of increasing the number of cores on performance
is studied. More number of cores enable solution of larger
data-sets. The distributed and systolic GALS architecture
easily supports an increasing number of computational cores
without affecting critical path delay and hence the maximum
operating frequency. We measure for both 1D and 2D prob-
lems, the critical path increases by 7.82% when the number
of cores increases by 10x.

4.2.2. Power Consumption

Fig. 6a and Fig. 6b show a linear increase in power with
scaling for both 1-D and 2-D architectures. This shows an
excellent scaling path for larger data-sizes. Also, as men-
tioned before the ∆ZMSB encoding method reduces the size
of the interconnects and hence the routing overhead. From
measurements on the FPGA platform we note an average of
44% reduction in power consumption for both 1D and 2D ar-
chitecures.

4.2.3. Resource Utilization

The amount of resources which the system requires also in-
creases almost linearly as shown in Fig. 7. Here, it is impor-
tant to point out that the major bottleneck for scaling is the
interconnect routing inside the FPGA.

The measured results show that the modular and scalable
design with the GALS architecture introduces high degree

Fig. 8. 2D Example: Brain Computed Topography Recovery.

0.45

0.5

0.55

0.6

0

10

20

30

5x5 6x6 7x7 8x8 9x9

SS
IM

P
SN

R
 (d

B
)

Size of subspace dimension

PSNR(dB)
SSIM

Fig. 9. Peak signal-to-noise ratio (PSNR) & Structural sim-
ilarity (SSIM) of Recovery of a sampled image from the CT
scan of a brain.

of parallelism and allows large problems with large data-sets
to be mapped into the architecture. This makes co-design
of iterative algorithms and systolic-architectures a powerful
paradigm for solving distributed optimizations over large
data-sets.

5. APPLICATIONS

Although this is a generic computing architecture, we present
one application for the 2D architecture. In CT scans and
MRIs, the acquired signal is non-uniformly sampled. As a
demonstration, a 800x800 pixels CT scan image was non-
uniformly sampled, divided into 8x8 blocks, and then recov-
ered through our system, as shown in Fig. 8. The reconstruc-
tion was experimented with the architecture of 8x8 cores, and
swept the subspace dimension from 5x5, 6x6, to 9x9. PSNR
and SSIM for the reconstructed scan are shown in Fig. 9.
Here we observe that as the size of subspace dimension in-
creases, quality of the recovered image increases.

6. CONCLUSIONS

Iterative dynamical systems form computational models for
solving distributed optimization problems. Due to the semi-
separable nature, they can often be parallelized, albeit with
architectural support. We propose such a distributed architec-
ture for solving leat-square minimization, which employs a
globally asynchronous design by exploiting a 4-phase hand-
shaking mechanism between cores to eliminate unnecessary
latency, bandwidth, and energy overheads associated with a
global clock. The design is verified on a Xilinx FPGA and
measurements reveal that the proposed architecture is scal-
able to large data-sets.



7. REFERENCES

[1] Z. Gui-Xia, Z. Cheng-Jing, and W. Xiao-Yan, “Research
of distributed data optimization storage and statistical
method in the environment of big data,” in 2017 Inter-
national Conference on Smart Grid and Electrical Au-
tomation (ICSGEA), pp. 612–617, May 2017.

[2] A. Parihar, N. Shukla, M. Jerry, S. Datta, and A. Ray-
chowdhury, “Vertex coloring of graphs via phase dy-
namics of coupled oscillatory networks,” Scientific Re-
ports, vol. 7, 2017.

[3] A. Ibrahim, T. F. Al-Somani, and F. Gebali, “New sys-
tolic array architecture for finite field inversion,” Cana-
dian Journal of Electrical and Computer Engineering,
vol. 40, pp. 23–30, winter 2017.

[4] M. Krstic, E. Grass, F. K. Grkaynak, and P. Vivet,
“Globally asynchronous, locally synchronous circuits:
Overview and outlook,” IEEE Design Test of Comput-
ers, vol. 24, pp. 430–441, Sept 2007.

[5] H.-T. Kung, “Why systolic architectures?,” IEEE com-
puter, vol. 15, no. 1, pp. 37–46, 1982.

[6] S. Borkar, H. Kung, et al., “Supporting systolic and
memory communication in iwarp,” in Computer Archi-
tecture, 1990. Proceedings., 17th Annual International
Symposium on, pp. 70–81, IEEE, 1990.

[7] J. G. Nash, “High-throughput programmable systolic ar-
ray fft architecture and fpga implementations,” in Com-
puting, Networking and Communications (ICNC), 2014
International Conference on, pp. 878–884, IEEE, 2014.

[8] S. D. Muñoz and J. Hormigo, “High-throughput fpga
implementation of qr decomposition,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 62,
no. 9, pp. 861–865, 2015.

[9] J. McWhirter, “Recursive least-squares minimization
using a systolic array,” Real-Time Processing VI, Aug.
1983, pp. 105–112, 1983.

[10] P. J. S. Ferreira, “The stability of a procedure for the
recovery of lost samples in band-limited signals,” Signal
Processing, vol. 40, no. 2-3, pp. 195–205, 1994.

[11] R. Marks, “Restoring lost samples from an oversampled
band-limited signal,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 31, no. 3, pp. 752–
755, 1983.

[12] H. Stark, “Polar, spiral, and generalized sampling and
interpolation,” in Advanced Topics in Shannon Sampling
and Interpolation Theory, pp. 185–218, Springer, 1993.

[13] M. Chang, L.-H. Lin, J. Romberg, and A. Ray-
chowdhury, “Optimo: A 65nm 270mhz 143.2mw pro-
grammable spatial-array-processor with a hierarchical
multi-cast on-chip network for solving distributed op-
timizations,” IEEE Custom Integrated Circuits Confer-
ence, 2019.


