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Abstract—This paper presents OPTIMO, a 65nm, 16-b, fully-
programmable, spatial-array processor with 49-cores and a
hierarchical multi-cast network for solving distributed opti-
mizations via the alternating direction method of multipliers
(ADMM). ADMM is a projection based method for solving
generic constrained optimizations problems. In essence, it relies
upon decomposing the decision vector into subvectors, updating
sequentially by minimizing an augmented Lagrangian function,
and eventually updating the Lagrange multiplier. The ADMM
algorithm has typically been used for solving problems in
which the decision variable is decomposed into two or multiple
subvectors. We demonstrate six template algorithms and their
applications and we measure a peak energy-efficiency of 279
GOPS/W.

Index Terms—Optimizations, Array-processing, Multi-cast net-
work, Distributed, ADMM, Near-Memory Computing

I. INTRODUCTION

The explosion of big-data problems arising in statistics,
machine learning (ML), image processing, 5G systems and
other related areas [1] have accelerated the development of
hardware prototypes that rely on data-flow architectures and
near-memory processing to address the memory-bottleneck.
As computational models that rely on a close coupling
between data storage and computation become relevant,
the importance of specialized hardware architectures that
can provide breakthrough advances in energy-efficiency and
performance is also increasing. Current generation of such
hardware are mostly geared towards inference in neural
networks (NNs). However, looking beyond the success of
neural network (NN) accelerators for classification [2]–[5], we
recognize a growing need for solving complex optimization
problems, which arise in all areas of signal processing [6]–[9]
such as ML model-training, computational imaging (medical,
optical and hyper-spectral) [10], resource-allocation in 5G
massive MIMO networks [11] and solving inverse problems
such as LDPC decoding [12]. Currently, most of these
algorithms are solved in GPUs and CPUs; however, with
the wide-spread proliferation of machine learning, embedded
signal processing, computational imaging etc., there is a
growing demand for solving such optimizations both at
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Fig. 1: OPTIMO: A spatial array processor for solving dis-
tributed optimizations via distributed ADMM.

edge-nodes as well as the cloud.
In spite of the diversity of applications, a common

mathematical framework, namely solving constrained-
optimizations (i.e., minimize l(x) under a constraint
r(x) = 0 for a vector x and functions l and r) binds most
optimization problems. A particularly challenging task in
solving optimization problems is the dimensionaility of the
task, namely, the size of the data-set or the feature-set.
This requires innovative algorithms as well as hardware-
algorithm co-design. Of increasing importance, are distributed
optimization algorithms where different processing elements
can work on different parts of the data or features; and
then communicate their local solutions with each other to,
finally, reach a global consensus. These algorithms have
been discussed in the literature [1], [13]–[15]. Among
these algorithms, alternating direction method of multipliers
(ADMM) has been particularly successful for solving the
constraint optimization problems for large-scale data-sets
[1]. In particular ADMM provides excellent convergence
for distributed data. In addition, it has been shown in [16],
that quantization error does not lead to unbounded error
for large problem classes. This allows us to use fixed point
arithmetic for solving ADMM on large data. A review of
the ADMM algorithm is provided in the next section; but
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Fig. 2: Program flow for distributed ADMM.

it suffices to say that ADMM is one of the most common
iterative algorithms for solving a large class of optimization
problems and interested readers are pointed to [1] for a
detailed survey. From a hardware perspective, ADMM,
particularly in its distributed form is an universal and
powerful computing model as it relies on local, iterative
computing on a subset of the data (local memory) along with
periodic exchange of information with near/distant neighbors
(a programmable or re-configurable data-flow) to converge
to a global solution (called consensus), as shown in Fig. 1.
Also Fig. 2 briefly shows how the program is initialized,
executed, and terminated. Here x, z and u are intermediate
variables, which will be introduced in the next section, but
the information flow is captured in this diagram.
In this paper, we present OPTIMO, a spatial-array-processor

with near-memory processing, a hierarchical and multi-cast
on-chip network, and full-programming support for solving
distributed optimizations via ADMM. The motivation for
OPTIMO is shown in Fig. 1. We demonstrate six template
algorithms: (1) least-squares optimizations [17], (2) least
absolute shrinkage and selection operator (LASSO) [18], (3)
elastic-net [19], (4) linear support-vector machine (SVM)
[20], (5) group-LASSO [21], and (6) distributed averaging
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Fig. 3: This work (measured) shows 4.77x (4.18x) improve-
ment in energy (performance) compared to a GPU-style SIMT
machine (simulated).

[22]. The algorithms use different objectives and constraints
and represent a vast majority of statistical algorithms that
are used on big-data sets. To understand the importance of
the data-flow architecture for solving such optimizations,
we simulated a GPU style SIMT machine (with both local
and shared cache) and compared it with OPTIMO, for
iso-number of cores and clock-frequency. From simulations
(Fig. 3), we note a 4.77x (4.18x) improvement in energy
(performance). To the best of our knowledge, this is the first
at-scale demonstration of a programmable array processor
for solving a set of optimization problems that are used for
various emerging applications, such as training of machine
learning models, computational imaging, signal processing etc.

II. AN OVERVIEW OF THE ALGORITHM

In this section, we provide an overview of ADMM as well
as its distributed representation, namely distributed ADMM.

A. Alternating Direction Method of Multipliers (ADMM)
The ADMM algorithm [1] is a projection based method

for solving generic problems of constrained optimizations. In
essence, it relies upon decomposing the decision vector into
subvectors, updating each subvector sequentially by minimiz-
ing an augmented Lagrangian function, and finally updating
the Lagrange multiplier corresponding to the constraint that
couples the subvectors using a dual subgradient method.
The ADMM algorithm has typically been used for solving
problems in which the decision variable is decomposed into
two or multiple subvectors. For simplicity, we only review the
form of ADMM with 2 subvectors, and its generalization to the
case of multiple subvectors is straightforward and is omitted
here.
The original form of ADMM with 2 subvectors denoted as
x ∈ Rn and z ∈ Rm solves the problem expressed as

min l(x) + r(z)

subject to Ax+Bz = c
(1)

where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. We assume both
l(x) and r(z) are convex.
We solve (1) using ADMM by first deriving the augmented
Lagrangian function of (1), and it is given by:

Lρ(x, z, y) = l(x) + r(z) + yT (Ax+Bz − c)+
(ρ/2)||Ax+Bz − c||22, (2)

where y is the Lagrange multiplier corresponding to the
constraint Ax + Bz = c and ρ is a positive scalar. Then, we
perform an iterative algorithm which starts from arbitrary ini-
tial values x(0), z(0), and y(0), and update using the following
updated rules:

x(k+1) := argmin
x

Lρ(x, z
(k), y(k))

z(k+1) := argmin
z

Lρ(x
(k+1), z, y(k))

y(k+1) := yk + ρ(Ax(k+1) +Bz(k+1) − c)

(3)

Equation (3) is solved iteratively for k ≥ 0 until convergence
is achieved.
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B. Distributed ADMM

By splitting up a objective function carefully, one can trans-
form ADMM to solve a range of useful optimization programs
in a distributed fashion, and this gives rise to distributed
ADMM. In its distributed form, one can parallely solve a
large optimization problem over a large data-set or a large
vector over multiple cores with intermittent communication
between the cores to achieve consensus. This makes solving
many problems in image processing, signal recovery, machine
learning, model prediction, and classification efficient and
real-time. To provide an overview of distributed ADMM, we
consider the following problem:

min
x

l(Ax− b) + r(x), (4)

or its ADMM form:

min
x

l(x) + r(z)

subject to x = Az − b,
(5)

which is a transformed representation of the original ADMM
problem (1). There are two ways to solve (4) and (5) in a
distributed manner: one is splitting across the data (or, training
examples in case of model fitting), and the other is by splitting
across feature vectors. We explain the two splitting methods
and provide their related examples and applications below.

1) Splitting across data: In most classical statistical estima-
tion and machine learning problems, the number of features
is modest but the number of training examples can be very
large. Thus we can utilize the structure of the problem by
letting each processor core handle a subset of the training
data. This is useful in many scenarios such as online social
network data processing, wireless sensor networks, and many
cloud computing applications. We partition A and b by rows,

A =


A1

A2

...
AN

 , b =

b1
b2
...
bN


where Ai ∈ Rmi×n, bi ∈ Rmi , and

∑N
i=1mi = m. Thus,

Ai and bi represent the ith partition of the data handled by
the ith processor. Over the partitions, if function f in (4) is
separable in the sense:

f(Ax− b) =
N∑
i=1

li(Aix− bi)

the optimization problem (4) becomes

min
x

N∑
i

li(Aix− bi) + r(x),

or in the ADMM form

min
x1,x2,··· ,xN

N∑
i

li(Aixi − bi) + r(z)

subject to xi = z for i = 1, · · · , N.
(6)

Following the ADMM algorithm described in the previous
section, we can solve (6).

Equation (6) is a generalized version of many problem
formulations and the applications are referred to as penalized
empirical risk minimization and structural risk minimization
in machine learning. For example, when li(Aix − bi) =
||Aix − bi||22 and r(x) = λ||x||1, problem (6) becomes the
well known LASSO problem [18] in its distributed form.

2) Splitting across Features: For another set of applications
such as natural language processing (NLP) [23] and bioinfor-
matics [24], there are often a modest number of examples but a
large number of features. In such situation, we would partition
A by columns, x by rows

A =
[
A1 A2 . . . AN

]
, x =


x1
x2
...
xN

 (7)

where Ai ∈ Rm×ni , x ∈ Rni , and
∑N
i=1 ni = n. This implies

that Ax =
∑N
i=1Aixi, i.e., Aixi can be thought of as a

‘partial’ prediction of b using only the features referenced in
xi. With this partitioning and under the assumption (which
isin most practical applications is true) that r(x) is separable
such that r(x) =

∑N
i=1 gi(xi), the problem (4) in its ADMM

form becomes:

min
x1,x2,··· ,xN

N∑
i

l(zi − b) +
N∑
i=1

ri(xi)

subject to Axi = zi for i = 1, · · · , N.
(8)

More examples of problems which can be formulated in the
form of (8) can be found in [1], and interested readers are
pointed to [1] for further reading.

C. Distributed Optimization as a Template Problem

What has been described above is an overview of the
distributed ADMM problem formulation, the details of how
it can be mapped to specialized hardware will be described
in Section IV. We have chosen six popular algorithms from
signal/image processing and machine learning community
namely as Least Square optimization [17], Lasso [18], Group
Lasso [21], Elastic Net [19], Support Vector Machines [20],
and Distributed Averaging [22]. The table of loss functions
and the regularization functions for each template problem are
shown in Fig. 4.

Algorithms 𝒇𝒇 𝒙𝒙 𝒈𝒈(𝒛𝒛) Applications

Least Square 1/2 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
2 - Modeling for Prediction

Lasso (1/2) 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
2 λ 𝐴𝐴 1

Variable selections
Modeling for prediction

Elastic Net 1/2 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
2 λ1 𝐴𝐴 1 + λ2 𝐴𝐴 2

2 Variable selections
Robust modeling for prediction

Group Lasso 1/2 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2
2 λ∑𝑖𝑖=1𝑁𝑁 𝐴𝐴𝑖𝑖 2

Structure variable selection 
Modeling for prediction

Linear SVM 𝐴𝐴𝑖𝑖 𝟐𝟐 𝑦𝑦𝑘𝑘 𝑎𝑎𝑘𝑘𝑇𝑇𝐴𝐴𝑖𝑖 + 𝑏𝑏 Classification

Distributed 
Averaging 1/2 𝐴𝐴𝐴𝐴 − 𝑏𝑏 2

2 - Large scale modeling and 
prediction

Fig. 4: Table for loss functions and regularization functions.
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One thing to keep in mind is that even though all the six algo-
rithms follow the same program flow as Fig. 2, how x and z
are updated depends on the loss function and the regularization
functions. This calls for hardware level programmability which
we describe next. Further, the programming model ensures that
a larger class of algorithms can be mapped to the hardware,
and although we do not describe them in this paper, the
hardware architecture and the programming model provides a
fundamental fabric for solving a very large class of distributed
optimizations. Once a problem can be written in the form of
(6) and (8), distributed ADMM can be efficiently mapped and
executed on the proposed test-chip, which we call OPTIMO.
To introduce OPTIMO, we first present its architecture in the
next section.

III. AN OVERVIEW OF THE SYSTEM ARCHITECTURE

A. System Architecture

Fig. 5 illustrates the chip-architecture where 49
programmable 16b OPUs (optimization processing units)
are capable of (1) computing locally and iteratively and (2)
transmitting/receiving data from the neighbors. The chip
boundary has communication interfaces to the PCB that
contain: (1) Scan ports (2) System control ports (3) Clock
ports. High level program-code and data-sets are translated to
instruction and data, scanned in to the chip through scan ports
and then executed. The control ports are used to start/reset
the system and the clock ports are used to either provide the
clock externally and/or monitor the system clock frequency.
Convergence is declared either (1) after a fixed number of
iterations, or (2) when the maximum cycle-to-cycle change
of data in an OPU falls below a threshold. The system also
contains two multicast layers, which will be described in
section III-D.
The choice of 16b is driven by the data-set and the
applications. For signal and image processing applications,
that are of interest to us, the raw-data is 8b and we have
determined that 16b precision yields the same results
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as floating point for the thousands of image and signal
processing data-sets that we have analyzed. Further, ADMM
is forgiving in terms of quantization error, and the system
converges because of the iterative nature of the algorithm.
In the next section, The detail architecture of each OPU is
described.

B. Optimization Processing Unit

One of the important challenges for spatial-array
architectures is scalability. In this design, we ensure
that the IO pins for each OPU are placed in a symmetric
fashion such that the OPUs can easily abut. Each OPU
features (Fig. 6): (1) one computation module consisting of a
programmable digital signal processor (P-DSP), a scratchpad
memory and control logic, (2) 2KB of instruction cache,
(4) 4KB of data memory (for local data R/W), and (5)
a transceiver module for the gather and scatter processes.
Programming is supported via 32b instructions, which will
be described in detail in Section IV and each inter-OPU
data-movement is supported on dedicated links. For this
work, we mainly focused on how such architecture relates
to iterative optimization problems; therefore we assume the
weights and data can fit into each OPU. For more complex
problems, the architecture can remain the same albeir with
a more sophisticated NoC and higher bandwidth OPU to
OPU bandwidth. Before data-transmission, a transmit buffer
temporarily stores the data and it is flushed out at the end
of the transmission. Received data is not buffered; instead
the control logic directly writes the incoming traffic to
the data cache thereby reducing both latency and energy.
The design supports synchronous, mesochronous as well as
asynchronous communication among OPUs with bidirectional
FIFOs enabling fast and parallel data exchange across
clock-crossing boundaries [25]. Fig. 7 (a) further illustrates:
(1) the number of instructions supported by each module,
(2) the commonly-used macro functions and the number
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Fig. 7: (a) Programming support is enabled via a custom instruction set architecture with a 32-b Instruction format and macro
functions. (b) Programmable DSP Architecture showing a 3-stage pipeline.

of instructions per function, and (3) their usage in the six
template algorithms.

C. Programmable DSP

Fig 7 (b) illustrates the principal components of the
P-DSP, which consists of three pipeline stages in an
architecture designed to maximize energy-efficiency. The
first supports add/subtract (or bypass), the second stage
supports multiply/divide (or bypass), and the final stage
supports a class of fixed-function blocks as shown in Fig. 7
(b). The key fixed-function blocks are: Boolean Functions
Processors, Shrinkage Function unit, a 16b ALU, a Hinge
Function calculator and a Square Root function evaluator.
Instruction level control of the pipeline and variable latency
through the P-DSP is maintained via a program counter.
The number of cycles required to execute an instruction will
dynamically change depending on the type of instruction
and the architecture configuration. The detail of the how to
program the P-DSP block as well as the related instructions
is described in section IV.

D. On-chip Network Design

The OPUs indexed as (row, column) interact via a 2-layered
multi-cast network with (1)layer-0 establishing near-neighbor
(neighborhood of 8) bi-directional connections and (2) layer-1

connecting 4 cluster center OPUs i.e, (2,2), (6,2), (2,6) and
(6,6) with the chip-center OPU i.e, (4,4). Depending on the
algorithm and structure of the data, optimization algorithms
require complex data-flow patterns where both near-neighbor
(layer-0 connections) as well as global information (layer-0
and layer-1 connections) are used. The 48-OPUs (excluding
the chip center) are divided into four clusters as shown, with
the OPU in the center as shown in Fig. 8. Global consensus
is reached in each iteration via the following steps.

1) the four clusters reach cluster-level consensus (layer-0)
2) gather process where the chip-center obtains cluster-

level consensus information from cluster centers (layer-
1) and calculates the global data

3) scatter (step-1) process where the chip-center scatters
the global data back to the cluster centers, and

4) a final scatter (step 2 and 3) process where the cluster-
centers spreads the data across all the OPUs

Once these processes terminate the system will ready all the
OPUs for the next iteration. The scatter and gather processes
are intrinsic to distributed optmizations as the system com-
putes locally, distributes information globally and iterates to
reach concensus. We compare the proposed hierarchical multi-
cast network with networks that allow 4 or 6 connections
to the neighbors as is common in convolutional and deep
neural networks [2]. It is intuitive to understand that instead
of connections to all the 6 neighbors, consensus data can alo
be transmitted by just connecting to the four near neighbors

Compute cluster 
consensus

Gather and calculate 
global consensus Scatter phase 1 Scatter phase 2 Scatter phase 3

End of comm.

Fig. 8: Gather and scatter processes of communication enabled by a hierarchical on-chip network result in fast convergence to
a global consensus.
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(as found in Google’s TPU). However, this comes at a cost
of increases number of iterations. Architectural and network
simulations of various optimization algorithms on more than
10000 random data-sets reveal a 29%-77% reduction in con-
vergence time compared to a fixed, 4-neighbor connection
(Fig. 10).

E. Clocking

Clocking often becomes critical when scalability and
power efficiency are considered. To overcome this issue, we
implement two clocking options on the chip: (1) a single global
clock (synchronous) either internal or external or (2) DCO
based clock per-OPU enabling asynchronous/mesochorous

data_in

FIFO
 control

rst

full

clkA

data_out

FIFO
 control

empty
re

clkB

rd_ptr

wr_ptr

4 x 16 bits
16b16b

Acknowledge

Start event i
Event i done
Ready for next event

Event i+1 done
Start event i+1

Request

Fig. 11: FIFO Architecture and the corresponding timing
diagram.

links. The DCO based local clocks have external control via
scan for fine-tuning. The single global clock option acts as
the baseline for us to compare with per-OPU based clocking,
where we show the comparison in section V. The system
runs at full-capacity when all the OPUs are producing outputs
at a fixed and equal rate – which requires synchronous
communication. In such a scenario, no OPU has to wait for
its neighbors to finish computation. However, per-OPU based
clocking removes design constraints on fine grained control of
clock-skew. As a compromise, mesochronous clocks running
at identical frequencies but mismatched phases, maintain high
throughput without requiring stringent skew requirements.
To support mesochronous as well as asynchornous clocks
per-OPU, the clock-crossing FIFO features a 64b buffer and
operates on a 4-phase handshaking scheme, as shown in Fig.
11. The example timing diagram for executing ADMM is
shown in Fig. 9.

F. Die micrograph and chip characteristics

The test-chip is fabricated in TSMC 65nm GP CMOS
process and occupies a total area of 12mm2, as shown in
Fig. 12. It features 306.25KB of on-die memory distributed
across 49-cores. The chip characteristics are shown in Fig. 13.
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Fig. 12: Die micrograph
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Technology TSMC 65nm GP 1P9M

Chip Size 3.41 mm x 3.41 mm

Core Area 3 mm x 3 mm

Package QFN6x6-48

Pin Count 48

Gate Count (logic only) 2725 kGates (NAND2)

On-Chip SRAM 306.25 KB

Number of OPUs 49

No. of pipeline stages in programmable DSP 3

Core Supply Voltage 0.5-1.2 V

IO Supply Voltage 2.5 V

Clock Rate 10-270 MHz

Network Asynchronous & Mesochronous

Peak Energy Efficiency 279 GOPS/W

Arithmetic Precision 16-bit fixed-point

Fig. 13: Chip characteristics.
IV. INSTRUCTION SET ARCHITECTURE AND

PROGRAMMING

As mentioned in section II, the complexity and details of
the algorithmic steps to be followed to update x and z depends
on the combinations of the loss function and the regularization
functions. For example, both Lasso and Group Lasso use
L1 norm as the penalty function, however as previously
shown in Fig. 7, the functions required for each algorithm are
very different, therefore resulting in very different sequence
of instructions. To enable programmability, we develop a
customized instruction set architecture (ISA) to support the
possible set of arithmetic functions that are required. The
instructions can be categorized by targets into four kinds:
(1) Computation Controller (2) Communication Controller (3)
Programmable-DSP and (4) Branch Controller. As shown in
Fig. 14, the instructions are 32 bits long and contain fields
that include destination, mode, operands and other fields for
detailed masks or configurations. A complete discussion of all
the instructions in the ISA are not needed; suffice is to say,
that the programmability provides us with the software stack
that enables a large class of distributed optimizations to be
efficiently executed. During the initialization phase mentioned
in section II, the instructions and the initial data are scanned
into the instruction cache and data cache respectively. Once
the initialization is done, a ‘start’ signal is broadcast to all the
cores and the iterations begin until the convergence criteria is
fulfilled.

A. Computation Controller

As mentioned in section III, P-DSP takes up to four data
inputs concurrently; thus fetching the data and keeping it ready
for the P-DSP to access becomes critical. Furthermore, in
order to support various operations with limited instruction

D
est. Mode

Operand 1 Operand 2
DSP Configurations Mask

 Multi-purpose operand 1 & 2
 Configurations & Mask (DSP mode)
 Mode
 Instruction destination

Other
Other

2b 4b 11b 11b 4b

Fig. 14: 32-b Instruction format.

[ 1 0 1 0 1 0 1 0 ]
WN
WW
SW
SS
ES
EE
NE
NN

OPU

SS

NN

W
W

Fig. 15: Example of a ‘mask’ configuration.
cache, setting the corresponding reading pattern and reading
size is also important. Thus by setting the initial address,
the desired size, and the desired operation, the computation
controller automatically determines the corresponding target
address and the pattern of reading a chunk of data from the
local memory depending on the kind of operation (i.e. scalar
operations, vector operations, or matrix multiplications...etc),
then fetches the next elements in order and buffers them for the
P-DSP to access. Thus a combination of the instruction cache
and fixed function instruction decoders allow minimization of
the overall gate count.

B. Communication Controller
As described in section III-D, gather and scatter mecha-

nisms (shown in Fig. 8) play an essential role in OPTIMO;
and to make it efficient, a ‘mask’ is associated with each
corresponding ‘send’ or ‘receive’ instruction, which is used to
enable/disable up to 8 neighborhood links depending on the
operation. An example of mask enabling only the horizontal
and vertical links is shown in Fig. 15.
From the ‘sender’s’ side, the sequence of data that it wishes
to send is first buffered in the TX buffer. Then, along with the
proper mask, the data is broadcast to the links that are enabled
in present iteration. Since the unbalanced masks between
‘sender’ and ‘receiver’ will result in dead locks, it relies on
the compiler to guarantee the masks as well as the length of
data sequence are properly configured and matched.

C. Programmable-DSP Controller
A total of 9 bits of configuration are aggregated in the

instruction and will be decoded inside the P-DSP. Since the
P-DSP supports up to four concurrent inputs and is composed
of three pipeline stages (shown in Fig. 7) (b), by changing and
permuting the configurations, it supports up to 768 different
kinds of computations. In addition to that, the number of cycles
required is also varied depending on the instruction and the
configuration, which is shown in Fig. 16.

D. Branch Controller
In order to support a dynamic program flow, the ability to

execute different instructions on different register values is cru-
Stage 1 Stage 2 Stage 3

Number 
of cycles

Adder 1 Multiplier 18 Square Root 14
Subtractor 1 Divider 27 Others 1

Bypass 1 Bypass 1

Fig. 16: Number of cycles required for each function.
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cial. By comparing the expected value with the target register
value, we can jump to the instruction with the resulting offset
and execute a desired branching operation. The current design
provides full branch control and allows effective programming
of a large class of algorithms.

V. MEASURED RESULTS

The test-chip is packaged in a QFN package and integrated
on a PCB with the necessary passives and connectors on board.
It is programmed via serial scan through an external FPGA.
Before the system starts, the instructions for each OPU are
scanned in and followed by a ‘start’ signal, the FPGA then
waits for the ‘done’ signal of the system. Measured electrical
performance and algorithm level benchmarking are presented
here.

Fig. 17 illustrates the measured power-performance trade-
off showing a peak FMAX (in a synchronous setting) of
270 MHz (at 0.5V) and an operation down in 0.5V (with
FMAX = 10 MHz). Fig. 18 shows as the operating voltage
is reduced, the dynamic energy scales as V 2 whereas the
time to complete the computation increases, thereby increasing
active leakage power. The peak energy-efficiency, considering
both dynamic and leakage power, is measured at 0.6V where
we note a peak-efficiency of 0.279TOPS/W. Below 0.6V, the
design is leakage dominated owing to the large (306.25 KB)
on-die SRAM. It should also be noted that an operation
here represents execution of a single pipeline-stage of the
P-DSP and is computationally more demanding than MAC
operations which are often considered as a benchmark for
signal processing or neural network accelerators. Per-OPU
DCO-based clocking reduces the overhead of routing a global
clock. We measure 2.7%-7.75% power savings compared to a
fully synchronous global clocking strategy. This is measured
at iso-performance by ensuring that the system throughput
for both the synchronous and asynchornous/mesochoronous
designs over a long measurement window is identical.

The power-breakdown among computation, communication
and storage at 0.6 V and 1.0 V is shown in Fig. 19. We see
that the power consumed by all three components are almost
equal at 1.0V and the system is dominated by SRAM power
(mostly leakage) at 0.6V. Thus distributed optimization, as
presented here, shows an interesting class of algorithms where
computation, communication and storage are almost equally
important, in terms of power consumption.
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We use the hardware prototype to execute template algo-
rithms across multiple data-sets and plot the time-to-compute
and energy at 0.6 V (Fig. 20 and Fig. 22 ). The data-sets are
generated at random and MATLAB based simulations are used
to ensure correct functionality and convergence. The error-
bars indicate the range of energy and performance required for
different data values in the data-sets. We also note that group
LASSO and linear SVM require the most number of iterations
and energy – which is as expected, given the complexity
of these algorithms. Although we demonstrate the capability
of this near-memory spatial-architecture in solving distributed
optimizations, the proposed hardware and programming model
can also support a variety of other array processing tasks as
well, including inference in deep and convolutional neural
networks. The on-chip network and the programmable P-DSPs
allow flexibility to map such neural network based computing
models, albeit with less energy-efficiency that fixed-function
accelerators.

1

10

100

1000

Least
Square

Lasso Elastic
Net

Linear
SVM

Group
Lasso

Ti
m

e 
(m

s)

Vcc = 0.6 V
Fclock = 70 MHz

Fig. 20: Measured algorithm-level benchmarking showing the
time to compute for six template algorithms. The errors bars
show different problem instances that were characterized.
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This work [6] [3] [4] [5] [2]
Application Distributed Optimization ECG Signal Reconstruction CNN Inference DNN Inference CNN Inference CNN Inference
Optimization algorithm ADMM implementation subspace pursuit none none none none
Technology 65nm 40nm 180nm 65nm 65nm 65nm
Area 12mm2 3.06mm2 3.3mm2 16mm2 16mm2 16mm2

On-die SRAM 306.25 KB 192KB 144 KB 36 KB 490.5 KB 181.5 KB
Programming support yes fixed function fixed function fixed function fixed function fixed function
On chip network 8 neighbors with hierarchical multicast not reported systolic (4 neighbor) not reported systolic (4 neighbor) systolic (6 neighbor)
Resolution 16b 32b 4b-16b 16b 16b 16b
Power 3.63 - 143.2 mW 21.8 - 93 mW 7.5-300 mW 45 mW 6.57 mW 278 mW
Frequency 10 - 270 MHz 67.5 MHz 200 MHz 125 MHz 10 - 100 MHz 200 MHz
Supply voltage 0.5-1V 0.9V 1V 1.2V 0.7-1.2V 0.82-1.17V
Performance/Watt 0.279 TOPS/W 21.5 MOPS/W 0.26-10TOPS/W 1.42TOPS/W 11.8 - 19.7 GOPS 0.21TOPS/W

Fig. 21: Comparison of the proposed array-processor with competitive spatial-array processors. The proposed design addresses
distributed optimization which presents a more complex data-flow and compute than traditional CNN and DNN inference
architectures.
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Fig. 22: Measured algorithm-level benchmarking showing the
energy to compute for six template algorithms. The errors bars
show different problem instances that were characterized.

VI. APPLICATIONS

The programmable and iterative optimization solver is ca-
pable of addressing multiple applications. MRI image recon-
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Fig. 23: Application of OPTIMO in (a) MRI image reconstruc-
tion (b) Binary SVM (c) Lasso feature extraction for sample
problems.

struction from non-uniformly sampled data-points is com-
putationally challenging and requires patients to lie in the
machine for a long time. Our solution uses iterative least-
squares optimization (Fig. 23 (a)) to reconstruct MRI images
with high PSNR in less than 8ms. Similarly binary SVMs (Fig.
23 (b)), a popular choice in ML classification problems shows
convergence with increasing number of iterations (multi-class
SVM records 91% accuracy on the MNIST data-set, which is
the state-of-the-art). Further, feature extraction with LASSO
(L1 regularization) used in ML, is shown in Fig. 23 (c). In
Fig. 21, a comparison with the state-of-the-art shows a (1) a
highly-programmable, iterative optimization solver with peak
efficiency of 279GOPS/W (2) a hierarchical multi-cast net-
work for program-specific data-movement and (3) competitive
energy-efficiency and voltage-scalability.

VII. CONCLUSIONS

In this paper we present a 49-core fully-programmable
spatial array processor for solving distributed optimizations
with support for a large class of algorithms and appli-
cations. We present a full-stack solution which enables
full-programmability, a key requirement for future high-
performance systems that need to solve a large class of similar
problems. We note a peak performance of 270MHz and peak
energy-efficiency of 279 GOPS/W.
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