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Resistive RAM (RRAM) is an exciting technology that exhibits various new properties 
that have been long absent in traditional charge-based memories. RRAM features high-
bit density, non-volatile storage, accurate compute in-memory (CIM), and both process 
and voltage compatibility. Each of these properties makes RRAM a compelling candidate 
for AI applications, particularly at the edge. To demonstrate the utility of these properties, 
we direct our effort to real-world event-driven and memory-constrained applications, 
such as recommendation systems and natural language processing (NLP). To enable 
these applications at the edge, higher memory capacity and bandwidth must be achieved 
despite irregular data access patterns that prevent effective caching and data reuse. 
Furthermore, we find that these applications are rarely (if ever) run continuously, but 
instead execution is triggered by events. The combination of these two challenges makes 
RRAM an ideal candidate given its high density and non-volatility enabling near-zero 
leakage power and complete power down. To address these challenges, this paper 
presents a 2.25MB RRAM based CIM accelerator with 765kB of SRAM and an embedded 
Cortex M3 processor for edge devices.  
 

In Fig. 16.3.1, we show the application flow required for a heterogeneous AI application 
featuring a recommendation system as the key workload. Next, we detail the architecture 
and software kernel for executing the application. The Cortex M3 receives events in the 
form of notifications or speech and initiates inference on the RRAM processing elements. 
The neural network model is distributed across the RRAM (shallow layers) and the SRAM 
(last ~20% of the network). Then training is performed in the last layer(s) when feedback 
is received from the user. Training is only performed in SRAM using CMOS SIMD units 
to limit writes to the RRAM and thus provide both energy and performance advantages 
while preserving the limited endurance of the RRAM cells. If sufficient time has elapsed 
since the last event, RRAM is completely powered down to enable up to 89.21% power 
reduction. Lastly, we present the CIM core with ECC for both sparse length sum (SLS) 
operation and vector-matrix multiplication (VMM). Embedding tables and dense layers 
are mapped to the same array and partitioned to maximize throughput. To overcome 
device-level challenges such as variation and resistance drift, we implement a novel CIM 
ECC scheme to detect, localize, and correct soft errors that requires only 12.5% memory 
overhead.  
 

Figure 16.3.2 illustrates a complete system which supports full software programmability 
with: (1) A centralized Cortex M3 microprocessor capable of running up to 200MHz with 
128KB ROM for storing the application image and 512KB SRAM for the application to 
use. (2) 288 fully integrated RRAM modules via AHB-Lite with 8KB RRAM cells per 
module which supports 1-to-8b inputs/weights and 1-to-32b output over 1-to-8 clock 
cycles. The RRAM modules are selected based on a 9b mask and a 9b target index, the 
unselected ones can be completed turned off through power gating. (3) A fully integrated 
vector module via AHB-Lite which contains a 128KB SRAM inside to store intermediate 
results, and 8 sets of ALUs capable of various functions. (4) 32 GPIOs and Serial-Wire-
Debug (SWD) port for external communication/debugging. For dataflow, the application 
image as well as the workload data are first stored in an external dataflash and transferred 
into the testchip via SWD when the system starts. Once the system starts, the Cortex 
M3 sends the first set of inputs to the selected RRAM modules, afterwards the 
intermediate data is transferred between the RRAM modules and the Vector module to 
maximize throughput. 
 

Figure 16.3.3 shows the detail of the RRAM module. The inputs/outputs can be divided 
into different categories: (1) Power control. (2) Targeted address. (3) Read 
configurations. (4) Write configurations. (5) MAC configurations. (6) Fault-tolerance 
configurations. As briefly mentioned previously, for the unselected RRAM modules, the 
power gates can be turned off to minimize power consumption. For read operations, we 
can turn on 1-to-9 word lines simultaneously with the desired cycles with the tradeoff 
between throughput and the sensing accuracy. For write operations, besides the digitally 
adjustable WL/WR voltages which will be discussed later, similar to the read operations, 
we can control the pulse width by changing the targeted cycle. The MAC unit supports 
both signed/unsigned operations and is capable of handling 1-to-8b number formats. 
 

To overcome inherent device variation in RRAM that yields sum-of-products errors in 
CIM, we incorporate a single error detection and single error correction (SECSED) ECC 
scheme in five steps: (1) Encoding is performed by appending a single parity bit to each 
weight. (2) Single errors are detected when the LSB of the ADC checksum does not 
match the parity bit. (3) If an error is detected, we read one word line at a time to avoid 

the sum-of-product error and correct the CIM error. As a result, we pay the penalty of 
serializing the read operation temporarily. (4) We localize the BL where the sum-of-
product error has occurred by comparing the CIM result and the correct serial result. 
(5) Lastly, victim BLs are tracked with a status register and regularly refreshed to combat 
resistance drift and variation. 
 

In Fig. 16.3.4, we illustrate physical design considerations, power plan, software 
programmability, and the testing procedure. Due to the considerable number of RRAM 
modules, proper physical design becomes critical in terms of power delivery, balanced 
delay, and routing congestion. To minimize the routing congestion and balance the delay 
between the Cortex M3 and all the RRAM modules, placing the microprocessor at the 
center of the chip turned out to be the best solution. To minimize the IR drop and get the 
best power delivery, multiple hierarchical power rings/stripes and layers as listed in the 
table are used. In addition, multiple voltage domains are separated for cleaner power 
delivery and measuring power consumption for each functional block. To provide a 
simple and complete platform, a complete application programming interface (API) is 
developed, as shown in the table. Furthermore, we develop an evaluation board which is 
capable of digitally adjusting reference voltages, power voltages via SPI and I2C, and is 
easily controllable through a UART interface. The system operation comprising: (1) 
Kickoff, (2) DFU mode, (3) testchip initialization, and (4) testchip application are shown 
in the figure. 
 

In Fig. 16.3.5, we first demonstrate the impact of power gates. To make the system low 
power, a set of dedicated power gates are integrated inside each RRAM module and the 
measured power consumption with different number of RRAM modules turned on is 
shown in the figure. The average measured power consumption per RRAM module is 
70μW. The power distribution with all RRAM modules turned on/off, as well as the area 
distribution are shown. The results show that the RRAM modules occupy the maximum 
amount of area, and are also responsible for 89.37% of total power when all of them are 
turned on. Next we show measured compute in-memory error and its impact on 
application performance. Each bin shows the percentage of actual ADC output codes 
obtained for the expected ADC output code. When the number of LRS cells is low (< 4), 
the result is always correct for the experiment’s sample size (8192 total). When more 
LRS cells are read, errors occur with increasing frequency. However, we note that errors 
are always constrained to ±1 errors (i.e., |measured – expected ADC code| <= 1). This 
property has special implications for both error correction and detection. Like traditional 
single-error detection, a ±1 can be detected using a single parity bit that we demonstrate 
in Fig. 16.3.3. With this data, we simulate the Neural Collaborative Filtering (NCF) model 
on the standard MovieLens dataset [1]. We show both BER and the standard hit-rate 
(HR) metric using 2 write configurations and ECC.    
 

Figure 16.3.6 shows the measured energy efficiency plot for binary IN/W along with the 
table showing energy efficiency under other different IN/W/Sparsity configurations. Under 
binary IN/W with no sparsity and 0.9V power supply, we measured 60.64TOPS/W 
@192MHz. The second figure shows the block diagram on the PCB board along with a 
table listing the component models being used. A comparison with state-of-the-art CIM 
architectures [2-7] illustrates competitive metrics, while addressing key technological 
challenges. The die-shot and the chip-characteristics are shown in Fig. 16.3.7. 
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Figure 16.3.1: Motivation and overall architecture of the proposed programmable 
hybrid digital/CIM RRAM system. Figure 16.3.2: Hybrid digital/CIM RRAM system architecture and dataflow.

Figure 16.3.3: Proposed RRAM module with ECC capability.
Figure 16.3.4: Software programmability, physical design considerations and 
evaluation board testing procedure.

Figure 16.3.5: Measured result of power gating, power and area distribution, ADC 
confusion matrix, bit error rate (BER) and application performance.

Figure 16.3.6: Measurement results of energy efficiency, evaluation board diagrams 
and comparison table.
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Figure 16.3.7: Micrograph of the test-chip and summary of performance.
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